Weights in Serre’s Conjecture for Hilbert Modular Forms: the Ramified Case

نویسنده

  • MICHAEL M. SCHEIN
چکیده

Abstract. Let F be a totally real field and p ≥ 3 a prime. If ρ : Gal(F/F ) → GL2(Fp) is continuous, semisimple, totally odd, and tamely ramified at all places of F dividing p, then we formulate a conjecture specifying the weights for which ρ is modular. This extends the conjecture of Diamond, Buzzard, and Jarvis, which required p to be unramified in F . We also prove a theorem that verifies one half of the conjecture in many cases and use Dembélé’s computations of Hilbert modular forms over Q( √ 5) to provide evidence in support of the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weights of Galois Representations Associated to Hilbert Modular Forms

Let F be a totally real field, p ≥ 3 a rational prime unramified in F , and p a place of F over p. Let ρ : Gal(F/F ) → GL2(Fp) be a two-dimensional mod p Galois representation which is assumed to be modular of some weight and whose restriction to a decomposition subgroup at p is irreducible. We specify a set of weights, determined by the restriction of ρ to inertia at p, which contains all the ...

متن کامل

Nonsolvable number fields ramified only at 3 and 5

For p = 3 and p = 5, we exhibit a finite nonsolvable extension of Q which is ramified only at p via explicit computations with Hilbert modular forms. The study of Galois number fields with prescribed ramification remains a central question in number theory. Class field theory, a triumph of early twentieth century algebraic number theory, provides a satisfactory way to understand solvable extens...

متن کامل

Wildly Ramified Galois Representations and a Generalization of a Conjecture of Serre

Serre’s conjecture relates two-dimensional odd irreducible characteristic p representations to modular forms. We discuss a generalization of this conjecture (due to Ash and Sinnott) to higher-dimensional Galois representations. In particular, we give a refinement of the conjecture in the case of wildly ramified Galois representations and we provide computational evidence for this refinement.

متن کامل

SERRE WEIGHTS FOR MOD p HILBERT MODULAR FORMS: THE TOTALLY RAMIFIED CASE TOBY GEE AND DAVID SAVITT

We study the possible weights of an irreducible 2-dimensional modular mod p representation of Gal(F/F ), where F is a totally real field which is totally ramified at p, and the representation is tamely ramified at the prime above p. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of excepti...

متن کامل

SERRE WEIGHTS FOR MOD p HILBERT MODULAR FORMS: THE TOTALLY RAMIFIED CASE

We study the possible weights of an irreducible 2-dimensional modular mod p representation of Gal(F/F ), where F is a totally real field which is totally ramified at p, and the representation is tamely ramified at the prime above p. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of excepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007